当地时间10月3日,瑞典皇家科学院宣布,2023年诺贝尔物理学奖由美国俄亥俄州立大学的皮埃尔·阿戈斯蒂尼、德国马克斯·普朗克量子光学研究所的费伦茨·克劳斯以及瑞典隆德大学的安妮·吕利耶共同获得。
皮埃尔·阿戈斯蒂尼(左)、费伦茨·克劳斯(中)和安妮·吕利耶(右)因“用实验方法产生了可用于研究物质中的电子动力学的阿秒量级光脉冲”而获得2023年诺贝尔物理学奖。
图片来源:诺贝尔奖官网
瑞典皇家科学院指出,他们“证明了一种制造极短光脉冲——阿秒脉冲的方法,这种方法可用于测量原子和分子内部的电子运动或改变能量的快速过程,为人类探索电子世界提供了新工具”。其中,吕利耶从激光与气体中原子的相互作用中发现了谐波效应;阿戈斯蒂尼和克劳斯则证明用这种效应可以产生比飞秒脉冲更短的阿秒光脉冲。
诺贝尔物理学委员会主席伊娃·奥尔森指出:“我们现在可以打开电子世界的大门。阿秒物理学让我们有机会了解控制电子的机制,下一步将是更好地利用它们。”
从飞秒到阿秒
就像我们用光来观察周围的宏观世界一样,我们也可以用光来探测亚原子世界。但有一个原则必须遵守:任何测量都必须快于被研究系统发生明显变化所需的时间,否则只能得到模糊的结果。
在一个分子中,原子在飞秒(千万亿分之一秒,10的负15次方秒)时间尺度内移动和转动。因此,科学家们可以借助此前最短的光脉冲——飞秒脉冲来对其开展研究。1999年,美国加州理工学院教授艾哈迈德·泽维尔因为利用飞秒激光观察反应过程中化学分子的过渡态,独享当年的诺贝尔化学奖。
而电子在原子或分子内部“狂飙”时,其位置和能量在一到几百阿秒内发生变化,要对其运动开展测量,飞秒技术“爱莫能助”。